
Parallel Ray Tracing with OpenMP

Hanlin He, Wenbo Song, Yaowei Zong

Abstract

Ray tracing has been a well-known effective approach for rendering an image. However,
the high computation complexity of this approach has been an obstacle to several real world
applications in the industry. With the development of computing power and processor architecture
in recent years, it becomes possible to distribute this task over multiple computing units to
accelerate the algorithm. In this project, we implemented a SIMD parallel ray tracer running on
multi-core CPUs with OpenMP. And we managed to optimize this parallel ray tracer by designing
a load balance method and performing a cache optimization. In the end, our optimized algorithm
achieved a significant speedup in comparison to the sequence version and demonstrated a similar
performance with the CUDA version.

1 Introduction

Ray tracing is one of the major approaches for realistic rendering of images in the field of computer
graphics. It is a simple yet powerful technique due to its ability to simulate different physical effects
with high quality such as to render shadows, reflections, and refracted light [1].

Ray tracing has been widely used in industries like animation. However, its expensive computation
cost appears to be seriously handicapped when it comes to many other applications especially the more
interactive ones like gaming. Therefore, the calculation speed of the ray-tracing method is undoubtedly
one of the basic problems that must be dealt with.[2]

A basic ray tracing algorithm always iterates through every pixel of the image to calculate its final
color[3]. In each iteration, first, the viewing ray is calculated. Then compute the first object hit by
the ray and its surface normal. With reflection or refraction, it may require to generate a new ray
from the hit point. Finally, set the color of the current pixel to the value computed from the hitting
point, light, the object surface, and the contribution of reflecting/refracting rays.

Figure 1: Ray Tracing

1



In this project, we tried to accelerate a ray-tracing program by parallelizing the pixel traversal
using OpenMP to distribute the work among multiple threads.

Figure 2: One Sample Image Produced by Our Program

2 Literature Survey

It has long been realized that parallel computers can be an effective way to accelerate the massive
float point calculations of ray tracing[4]. Depending on which part of this problem is divided among
processors, former studies can be categorized into two major areas: data-driven and demand-driven.

The data-driven approach describes the ones that distribute the object space over the processors.
Rays are traced through each cells of the spatial subdivision which are assigned to different processors.
This approach was firstly proposed by Swensen et al[5] and further refined by Cleary et al[6]. Despite
this approach can accomplish some speedup, it inherently has several severe disadvantages. Kobayashi
et al[7] and Jenson et al[8] proposed some load balancing strategies to mitigate the unbalance load
problem caused by the clustering of rays and their reflections. However, apart from the load balancing
problem, there are more problems including the extra communication overhead, which will become a
bottleneck to further accelerate ray tracing.

Another popular approach is to assign each processor with the task to calculate different parts
of the final image. This is called the demand-driven approach[9] and it is the basis of our parallel
implementation. Crow et al[10] implemented several demand-driven approaches using different image
splitting logistics in 3-D object space. Later, another efficient implementation was proposed[11], which
distributed the pixels of the image to SIMD processor arrays. In spite of the fact that this approach
can relatively distribute the computation task more evenly among the processors than the former
approach, the recursion depth when computing the color of each pixel can be largely different from

2



each other. However, this problem has been neglected in the former studies, which would be our
main focus in this project. Moreover, coherent subsections of the image might be assigned to different
processors, which can result in cache misses.

3 Proposed Idea

3.1 Sequential version

The basic ray tracing algorithm continuously computes the color for each pixel. These pixels are
independent of each other, so it is suitable for parallel.

#sequential part

#parallel part

for each pixel do

compute viewing ray

color = color_evaluate(ray, depth)

#sequential part

To simulate the effects of reflection and refraction, when a ray hits the object, it will shoot a new
ray aimed in a different direction. The color of the computed pixel is the result of such a recursive
ray tracing with a limited recursion depth.

color_evaluate(ray, depth)

if (ray hits an object with t in [0, infinity)) then

compute color

if the depth > 0 and can produce new ray

create new reflected/refracted ray

color += color_evaluate(new_ray, depth-1)

else

color = background color

return color

3.2 Basic Parallel Idea

We were implementing a SIMD parallel ray tracing running on multi-core CPUs with OpenMP. The
basic idea is to assign the for each loop to different threads since these pixels are independent. In this
way, the original sequential render program can be run in parallel.

#sequential part

#parallel part

#pragma omp parallel for

for each pixel do

compute viewing ray

color = color_evaluate(ray, depth)

#sequential part

We continued to optimize the running time for this parallel version in the following Load Balance
and Cache Line sections.

3.3 Load Balance

The basic version is simple and can be optimized. The first issue we faced with is load imbalance.
Obviously, there is a workload difference between different pixels due to the variance of needed re-
cursion times. If a ray does not hit any object, then it will directly return the background color. Or

3



if the material it hits does not have any reflection/refraction effect, then it will directly return the
material’s color. Since it is impossible to directly notice the imbalance problem from the parallel for
part, we have to find out a criterion evaluating and balancing the workload. Otherwise, the work is
distributed unevenly, which means some threads may finish earlier and then wait in idle, causing a
performance loss.

In this project, we took two strategies to balance the load of different threads. The first one was
creating an operation pool. Since we could not know the exact number of recursive computations of
each pixel computation. We set up the operation pool by first adding all the rays emitted from the
pixel points into it. Then we assigned these operations in the pool to several threads. After the first
round computation finished, we got the newly produced rays and refilled them into the pool, repeating
the previous steps (Figure.3).

Figure 3: Load Balance with Operation Pool

Then the pseudo code changed as the following. We could also make use of multiple threads in
creating operations into the pool. Compared with the basic version, this kind of load balancing could
make full use of all threads, but it also created some overheads while creating and maintaining the
operations in the pool.

#sequential part

#parallel part

for each pixel do

compute viewing ray

collect these rays and corresponding computation into the pool

#pragma omp parallel

while pool is not empty

#pragma omp for

for each operation in the pool

pop the operation

Evaluate the color and add it into the pixel matrix

if produce new ray

add new ray to the pool

#sequential part

Is there any better and simpler way to do load balance? Yes, that is omp schedule. In fact, we were
not assigning the work to threads pixel by pixel, but line by line. The Default schedule would cut the

4



whole image into sections and then assign them to different threads. What if we manually assign the
image matrix line by line using static,1? The reason we selected it is based on the assumption that
the neighbor pixels are more likely to have the same recursion depths. So when we distributed the
work line by line, threads were more likely to get similar loads and thus reduce the performance loss
caused by imbalance (Figure.4).

Figure 4: Load Balance with OMP Schedule

To justify our assumption, we compared the overall loads of each thread with different scheduling
strategies (Figure.5). For example, with fixed image width=800, and #thread=8, the load distribu-
tion varied a lot with the default schedule. With static schedule and chunk-size equals to one, the
load distribution among threads was more balanced. The best distribution pattern happened while
distributing the work to threads pixel by pixel. It could be implemented by transferring the original
render into pixel by pixel version with the help of omp collapse. However, the line-by-line distribu-
tion was good enough. So in the experiment, we selected the line-by-line distribution with (static, 1)
schedule.

Figure 5: Load Distribution with Different Schedule Strategies

5



#sequential part

#parallel part

#pragma omp parallel for schedule(static,1)

for each line in the image do

for each pixel in the line do

compute viewing ray

color = color_evaluate(ray, depth)

#sequential part

3.4 Cache Optimization

As mentioned before, we distributed the image by lines, which could be a potential bottleneck in
running time. Because the image size varied, there might be cache misses when switching between
threads. Moreover, three matrices (representing R, G, and B) were updated in each iteration for
calculating the color of each pixel, which could also increase the caching problem since each thread
had to fetch three different matrices.

Therefore, we modified the updating pattern for the color calculation, respectively the R, G, B
matrices standing for every primary color. Instead of constantly fetching three matrices in each
iteration, we decided to use a large matrix to store all the numbers and reconstruct it to put the R, G,
B values of a fixed pixel nearby. In this way, with a single cache, we can update three values together.

Ideally, these changes should result in a speedup. Because given that each thread only needed
to update one matrix, they could update all the three variables fetched from the memory. Although
we would have to rebuild the three matrices from the large matrix after calculating the color of each
pixel, we could parallelize this part to mitigate the time cost.

4 Experimental Setup

The scene we use for the following experiments consists of still and moving spheres on a checkered
ground as shown in figure 6. Shading effect includes diffusion, shadow, reflection, refraction,
texture material, and motion blur.

Figure 6: The Test Scene

6



The variables of this program includes image width, samples per pixel (for fuzzy reflection
and defocus blur), max depth (for reflection and refraction) and number of threads. The combi-
nation of image width, samples per pixel, max depth decides the size of problem. With fixed
max depth, the problem size is linear with image width2 × samples per pixel.

To test the scalability and speedup over sequential version, we run tests on NYU CIMS Com-
pute Server crunchy1.cims.nyu.edu. This server has four AMD Opteron 6272 CPUs (2.1 GHz, 4*16
cores/threads, 64 cores/threads total). The compiler we use is GCC-11.2.0 by module load gcc-11.2 on
crunchy1. To use different versions of implementation, simply checkout the corresponding git branch
and create a build folder, then use CMake-3 to compile the provided CMakeLists.txt file. The CUDA
version was tested on NYU CIMS Compute Server cuda1.cims.nyu.edu.

The tools we used for performance analysis include recording the execution time using omp get wtime(),
and checking cache-misses using the Performance analysis tools perf.

5 Experiments & Analysis

5.1 Sequential Version and Basic Parallel

First, we tested the basic parallel idea implemented in the master branch with image width=1200,
samples per pixel=100, max depth=5. We use num threads=1 as the sequential version baseline. The
speedup was calculated by time using one thread / time using t threads. Results are shown in Figure.7
and Table.1.

Figure 7: Speedup for Basic Parallel

We got a great speed-up, even in the basic version. The speed-up was not increasing linearly with
the number of threads due to other overhead like creating and managing threads. However, it got a
great result especially when the number of threads was small. For example, we got 1.869 speed-up

7



with 2 threads, and 3.192 speed-up with 4 threads. When the number of threads exceeded 8, the
accelerating effect won’t significantly increase, with a speed-up/thread less than 0.5.

threads real time (seconds) speedup efficiency

64 180.741 7.985 0.125
32 194.357 7.425 0.232
16 227.899 6.333 0.396
8 298.451 4.836 0.604
4 452.150 3.192 0.798
2 772.112 1.869 0.935
1 1443.194 1 1

Table 1: Speedup: Basic Parallel

5.2 Load Balance with Operation Pool

We tested the code maintaining a pool to distribute work among threads with fixed problem size and
different numbers of threads and compared the results with the basic parallel version (Figure 8). The
results shows, although we did accomplish acceleration in the parallel part with more threads, we also
added some overheads while initializing and reconstructing the operation pool. The overall cost of
using the operation pool was greater than the basic version in the master branch.

Figure 8: Speedup for Basic Parallel

Although this is a great idea to evenly distribute workload between threads, it requires other
methods to reduce the overhead mentioned above. To be specific, if we could develop a better way
to simulate the reflection and refraction without using recursion, then there is no need to reconstruct
the pool. Instead, we can fetch the whole operations at the beginning, add them into the pool, and
let threads pick tasks from it. That is so-called ”Recursion Removal”.

8



5.3 Load Balance with Schedule

As justified before, the nearby pixels are more likely to have same the recursion times so as the
computation needed. In this section, we tested the parallel version with schedule (static,1 to assign
the work to threads line by line. Comparing Figure.9 with Figure.7, we can conclude that, the speedup
with more threads is more significant with a balanced load distribution.

Figure 9: Speedup for Static Schedule

In Figure.10, we compared the time cost of parallel part of different versions. The basic version,
the static schedule version, and the version of cache optimization with reorganized matrices. Among
them, the static schedule one had the best time performance. In this scenario, the static schedule
version could reach 15% speed-up in contrast to the basic version.

Figure 10: Parallel Time between different branches

9



5.4 Cache Optimization

The perf command on Linux helps us to monitor the performance statistics of the program, including
cache-miss. In this section, we tested the code version in which a reorganized matrix could help
to reduce the data that needs to be fetched in every iteration. As shown in Figure.11, the cache-
optimized version indeed achieved a cache-miss-reducing from 11% to 8% compared with the basic
version. However, this kind of cache optimization won’t contribute much to the overall time cost
according to our experiments in Figure.10.

Figure 11: Cache-Miss Percentage between different branches

5.5 Scalability

At the end of experiments, we explored the scalability of our parallel ray tracing algorithm (Figure.12).
We fixed the max depth and the samples per pixel, then the problem size is in linear relationship
with image width2. So if we set image width as 400, 560, 800, 1200, and 1600, then the problem
size is increasing exponentially.

The experiments results are shown in Figure.12. As the problem size increases, with the number
of threads fixed, we could maintain a great speed-up. And as the number of threads increases, with
the problem size fixed, we could achieve a higher speed-up. Besides, with a bigger problem size, the
speed-up efficiency (speedup relative to 1 thread / #threads ) increased too (Table.2).

10



Figure 12: Execution Time vs. Problem Size

threads 400 560 800 1200 1600

1 1.0 1.0 1.0 1.0 1.0
2 0.932 0.929 0.926 0.936 0.936
4 0.857 0.862 0.842 0.864 0.860
8 0.717 0.698 0.684 0.721 0.704
16 0.442 0.450 0.475 0.465 0.467

Table 2: Efficiency

To compare our parallel ray tracing with other ones’ implementations, we referred to a CUDA
version and transferred it to our experimental environment. The execution time comparison is listed
in Table.3.

Version 400 560 800 1200 1600

CPU 16 threads 23.91 46.20 91.22 204.90 362.88
GPU CUDA 12.13 19.20 36.19 73.94 127.73

Table 3: Image Rendering Time: CPU with 16 threads vs. GPU

11



6 Conclusions

In this project, we implemented a parallel ray tracing algorithm for multi-core processors by OpenMP.
To optimize the program and boost acceleration, we experimented with the effects of load balance
and cache-miss, and implemented different strategies. In the end, we tested the selected version with
different problem sizes and #threads, compared with the results of the CUDA version.

• The ray tracing algorithm is a widely used computer graphics technology. The independence
of pixel color computation makes it a perfect target for parallelizing. Many researchers have
already implemented the parallel versions for GPU, however, parallel ray tracing for multi-core
CPU has not been fully discussed. Parallelizing ray tracing for CPU is also meaningful because,
in this way, some lightweight applications using ray tracing (e.g. graphic interface and human-
computer interaction) can also benefit from the progress of multi-core processors nowadays.

• The load balance is the primary optimization source. There are some different strategies. First
one is creating an operation pool and let threads pick tasks from it, but this required ”Recursion
Removal” otherwise there are some overheads while maintaining the pool. The simpler one which
is suitable for OpenMP is making good use of the omp schedule. As justified before, nearby
pixels (or lines) are more likely to have similar computation loads. In this way, a static schedule
is good enough and won’t add many overheads. The cache-miss can also be reduced if we took
some strategies. However, in this problem, the performance loss caused by cache-miss is not
significant, so is the speedup from this optimization.

• The parallel ray tracing implemented in this project has a great speed-up and efficiency, even in
the comparison with the CUDA version. It is scalable with increasing problem size or #threads.
Since the ratio of sequential is relatively low in ray tracing problem, we don’t need too big a
problem size to get a satisfactory speedup. It keeps providing fantastic speedup while increasing
the problem size. In the meanwhile, it won’t lose much efficiency while increasing the number
of threads.

References

[1] GH Spencer and MVRKMurty. “General ray-tracing procedure”. In: JOSA 52.6 (1962), pp. 672–
678.

[2] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. “Arts: Accelerated ray-tracing system”.
In: IEEE Computer Graphics and Applications 6.4 (1986), pp. 16–26.

[3] Andrew S Glassner. An introduction to ray tracing. Morgan Kaufmann, 1989.

[4] Alan Heirich and James Arvo. “A competitive analysis of load balancing strategies for parallel
ray tracing”. In: The Journal of Supercomputing 12.1 (1998), pp. 57–68.

[5] Mark Dippe and John Swensen. “An adaptive subdivision algorithm and parallel architecture for
realistic image synthesis”. In: ACM SIGGRAPH Computer Graphics 18.3 (1984), pp. 149–158.

[6] John G Cleary et al. “Multiprocessor ray tracing”. In: Computer Graphics Forum. Vol. 5. 1.
Wiley Online Library. 1986, pp. 3–12.

[7] Hiroaki Kobayashi et al. “Load balancing strategies for a parallel ray-tracing system based on
constant subdivision”. In: The visual computer 4.4 (1988), pp. 197–209.

[8] Erik Reinhard and Frederik W Jansen. “Rendering large scenes using parallel ray tracing”. In:
Parallel Computing 23.7 (1997), pp. 873–885.

[9] David Plunkett and Michael Bailey. “The vectorization of a ray-tracing algorithm for improved
execution speed”. In: IEEE Computer Graphics and Applications 5.08 (1985), pp. 52–60.

12



[10] Franklin C Crow et al. “3d image synthesis on the connection machine”. In: International Journal
of High Speed Computing 1.02 (1989), pp. 329–347.

[11] Tony TY Lin and Mel Slater. “Stochastic ray tracing using SIMD processor arrays”. In: The
Visual Computer 7.4 (1991), pp. 187–199.

13


